Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.422
Filter
1.
Radiat Oncol ; 19(1): 48, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622628

ABSTRACT

BACKGROUND: Tumor regression and organ movements indicate that a large margin is used to ensure target volume coverage during radiotherapy. This study aimed to quantify inter-fractional movements of the uterus and cervix in patients with cervical cancer undergoing radiotherapy and to evaluate the clinical target volume (CTV) coverage. METHODS: This study analyzed 303 iterative cone beam computed tomography (iCBCT) scans from 15 cervical cancer patients undergoing external beam radiotherapy. CTVs of the uterus (CTV-U) and cervix (CTV-C) contours were delineated based on each iCBCT image. CTV-U encompassed the uterus, while CTV-C included the cervix, vagina, and adjacent parametrial regions. Compared with the planning CTV, the movement of CTV-U and CTV-C in the anterior-posterior, superior-inferior, and lateral directions between iCBCT scans was measured. Uniform expansions were applied to the planning CTV to assess target coverage. RESULTS: The motion (mean ± standard deviation) in the CTV-U position was 8.3 ± 4.1 mm in the left, 9.8 ± 4.4 mm in the right, 12.6 ± 4.0 mm in the anterior, 8.8 ± 5.1 mm in the posterior, 5.7 ± 5.4 mm in the superior, and 3.0 ± 3.2 mm in the inferior direction. The mean CTV-C displacement was 7.3 ± 3.2 mm in the left, 8.6 ± 3.8 mm in the right, 9.0 ± 6.1 mm in the anterior, 8.4 ± 3.6 mm in the posterior, 5.0 ± 5.0 mm in the superior, and 3.0 ± 2.5 mm in the inferior direction. Compared with the other tumor (T) stages, CTV-U and CTV-C motion in stage T1 was larger. A uniform CTV planning treatment volume margin of 15 mm failed to encompass the CTV-U and CTV-C in 11.1% and 2.2% of all fractions, respectively. The mean volume change of CTV-U and CTV-C were 150% and 51%, respectively, compared with the planning CTV. CONCLUSIONS: Movements of the uterine corpus are larger than those of the cervix. The likelihood of missing the CTV is significantly increased due to inter-fractional motion when utilizing traditional planning margins. Early T stage may require larger margins. Personal radiotherapy margining is needed to improve treatment accuracy.


Subject(s)
Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Motion , Pelvis/pathology , Cone-Beam Computed Tomography/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
2.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38588646

ABSTRACT

Objective.In current radiograph-based intra-fraction markerless target-tracking, digitally reconstructed radiographs (DRRs) from planning CTs (CT-DRRs) are often used to train deep learning models that extract information from the intra-fraction radiographs acquired during treatment. Traditional DRR algorithms were designed for patient alignment (i.e.bone matching) and may not replicate the radiographic image quality of intra-fraction radiographs at treatment. Hypothetically, generating DRRs from pre-treatment Cone-Beam CTs (CBCT-DRRs) with DRR algorithms incorporating physical modelling of on-board-imagers (OBIs) could improve the similarity between intra-fraction radiographs and DRRs by eliminating inter-fraction variation and reducing image-quality mismatches between radiographs and DRRs. In this study, we test the two hypotheses that intra-fraction radiographs are more similar to CBCT-DRRs than CT-DRRs, and that intra-fraction radiographs are more similar to DRRs from algorithms incorporating physical models of OBI components than DRRs from algorithms omitting these models.Approach.DRRs were generated from CBCT and CT image sets collected from 20 patients undergoing pancreas stereotactic body radiotherapy. CBCT-DRRs and CT-DRRs were generated replicating the treatment position of patients and the OBI geometry during intra-fraction radiograph acquisition. To investigate whether the modelling of physical OBI components influenced radiograph-DRR similarity, four DRR algorithms were applied for the generation of CBCT-DRRs and CT-DRRs, incorporating and omitting different combinations of OBI component models. The four DRR algorithms were: a traditional DRR algorithm, a DRR algorithm with source-spectrum modelling, a DRR algorithm with source-spectrum and detector modelling, and a DRR algorithm with source-spectrum, detector and patient material modelling. Similarity between radiographs and matched DRRs was quantified using Pearson's correlation and Czekanowski's index, calculated on a per-image basis. Distributions of correlations and indexes were compared to test each of the hypotheses. Distribution differences were determined to be statistically significant when Wilcoxon's signed rank test and the Kolmogorov-Smirnov two sample test returnedp≤ 0.05 for both tests.Main results.Intra-fraction radiographs were more similar to CBCT-DRRs than CT-DRRs for both metrics across all algorithms, with allp≤ 0.007. Source-spectrum modelling improved radiograph-DRR similarity for both metrics, with allp< 10-6. OBI detector modelling and patient material modelling did not influence radiograph-DRR similarity for either metric.Significance.Generating DRRs from pre-treatment CBCT-DRRs is feasible, and incorporating CBCT-DRRs into markerless target-tracking methods may promote improved target-tracking accuracies. Incorporating source-spectrum modelling into a treatment planning system's DRR algorithms may reinforce the safe treatment of cancer patients by aiding in patient alignment.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Pancreatic Neoplasms , Radiosurgery , Humans , Cone-Beam Computed Tomography/methods , Radiosurgery/methods , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/methods , Deep Learning , Tomography, X-Ray Computed/methods , Pancreas/diagnostic imaging , Pancreas/surgery , Phantoms, Imaging
3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 207-213, 2024 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597080

ABSTRACT

OBJECTIVES: To determine the optimal placement of miniscrews, this study compared adult male and female patients in terms of cortical bone density, cortical bone thickness, and available bone width in the infrazygomatic crest region. METHODS: The cone beam computed tomography imaging data of 200 patients (20-30 years old; 100 males and 100 females) were collected. The right maxillary posterior teeth in the sagittal plane were divided into six levels from proximal to distal, and three measurement sites were positioned at vertical distances of 8, 10, and 12 mm from the cementum. Cortical bone density, cortical bone thickness, and available bone width were measured in 18 measurement sites in the infrazygomatic crest and analyzed statistically. RESULTS: The highest cortical bone density, cortical bone thickness, and available bone width in the infrazygomatic crest in adult male and female patients were at the level of the interradicular space between the maxillary second premolar and maxillary first molar. The bone cortical density and thickness increased with vertical height, whereas the available bone width decreased with increasing vertical height. Differences were observed in cortical bone density, cortical bone thickness, and available bone width between adult male and female patients. CONCLUSIONS: The optimal implantation sites of the micro-implant anchorages in the infrazygomatic crest were at the level of the interradicular space between the maxillary second premolar and the maxillary first molar, and the vertical height of the optimal implantation site in males was appropriately higher than that in females.


Subject(s)
Dental Implants , Orthodontic Anchorage Procedures , Adult , Humans , Male , Female , Young Adult , Cone-Beam Computed Tomography/methods , Molar , Bicuspid , Maxilla/diagnostic imaging , Orthodontic Anchorage Procedures/methods
4.
Tomography ; 10(4): 444-458, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38668392

ABSTRACT

The study of the maxillary sinus anatomy should consider the presence of two features of clinical importance. The arterial supply course and the presence of the so-called Underwood septa are two important factors to consider when planning surgical treatment to reduce the risk of surgical complications such as excessive bleeding and Schneiderian membrane perforations. This study aimed to investigate the above-mentioned anatomical structures to improve the management of eventual vascular and surgical complications in this area. This study included a total of 200 cone-beam computed topographies (CBCTs) divided into two groups of 100 CBCTs to evaluate the arterial supply (AAa) course through the lateral sinus wall and Underwood's septa, respectively. The main parameters considered on 3D imaging were the presence of the AAa in the antral wall, the length of the arterial pathway, the height of the maxillary bone crest, the branch sizes of the artery in the first group, and the position of the septa, the length of the septa, and their gender associations in the second group. The CBCT analysis showed the presence of the arterial supply through the bone wall in 100% of the examined patients, with an average size of 1.07 mm. With regard to the septa, 19% of patients presented variations, and no gender difference was found to be statistically significant. The findings add to the current understanding of the clinical structure of the maxillary sinus, equipping medical professionals with vital details for surgical preparation and prevention of possible complications.


Subject(s)
Cone-Beam Computed Tomography , Imaging, Three-Dimensional , Maxillary Sinus , Humans , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/blood supply , Cone-Beam Computed Tomography/methods , Female , Male , Imaging, Three-Dimensional/methods , Middle Aged , Adult , Aged , Young Adult
5.
Clin Oral Investig ; 28(5): 276, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668916

ABSTRACT

OBJECTIVE: This study sought to three-dimensionally (3D) evaluate the maxillomandibular basal bone and dentoalveolar widths using cone-beam computed tomography (CBCT) scans in adult Chinese populations with different vertical and sagittal facial skeletal patterns whilst no apparent posterior dental crossbite. MATERIALS AND METHODS: The retrospective cross-sectional comparative study enrolled CBCT images of 259 adult patients (125 males and 134 females). The subjects were divided into the hyperdivergent(n = 82), hypodivergent(n = 88), and normodivergent(n = 89) groups based on the Jarabak ratio (S-GO/N-Me), which were further divided into three subgroups of skeletal Class I, II and III, based on both the ANB angle and AF-BF parameters. ANOVA was used to analyze the extracted data of the studied groups. The intra- and inter-observer reliability was analyzed using the intra-class correlation coefficient (ICC). RESULTS: In all three vertical facial skeletal patterns, the skeletal Class II had significantly smaller mandibular basal bone width compared to skeletal Class I and Class III, both at the first molar and first premolar levels. The skeletal Class III seemed to have smaller maxillary basal bone width compared to skeletal Class I and Class II malocclusions; however, a significant difference was found only in the normodivergent pattern. As for the dentoalveolar compensation, it was most notable that in the hypodivergent growth pattern, the skeletal Class II had significantly smaller maxillary dentoalveolar width compared to the Class I and Class III groups, both at the first molar and first premolar levels. CONCLUSIONS: Based on the sample in the present study, skeletal Class II has the narrowest mandibular basal bone regardless of the vertical facial skeletal pattern. CLINICAL RELEVANCE: For Chinese adults with no apparent transverse discrepancy, the maxillomandibular basal bone and dentoalveolar widths are revealed in specific categories based on different vertical and sagittal facial skeletal patterns. In diagnosis and treatment planning, particular attention should be paid to skeletal Class II for possibly existing mandibular narrowing.


Subject(s)
Cone-Beam Computed Tomography , Imaging, Three-Dimensional , Malocclusion , Mandible , Humans , Male , Female , Adult , Cross-Sectional Studies , Retrospective Studies , Malocclusion/diagnostic imaging , Mandible/diagnostic imaging , China , Cephalometry , Middle Aged
6.
Compend Contin Educ Dent ; 45(4): 214, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622082

ABSTRACT

Hypoplastic maxilla is a common skeletal anomaly that compromises function and esthetics. Beyond just a narrow-appearing smile, this abnormality presents significant restorative challenges in adult patients as it is often associated with crowding, compromised axial inclination of the teeth, lack of alveolar bone support, root proximity, and occlusal trauma.1 Recent research also confirms association of maxillary deficiency with nasal stenosis and a predisposition to compromised nasal airflow and pharyngeal collapse during sleep.2,3 Maxillary transverse skeletal deficiency is often but not always associated with posterior dental cross-bite. In most cases, maxillary posterior teeth are flared buccally and mandibular posterior teeth are excessively lingually inclined masking the underlying skeletal problem.4 Advances in 3D imaging in dentistry, namely ultra-low radiation cone-beam imaging technology, have significantly enhanced clinicians' ability to diagnose and subsequently treat a maxillary transverse deficiency.5.


Subject(s)
Malocclusion , Orthodontic Appliances, Removable , Orthodontics , Tooth , Adult , Humans , Esthetics, Dental , Malocclusion/therapy , Maxilla , Palatal Expansion Technique , Cone-Beam Computed Tomography/methods
7.
Angle Orthod ; 94(3): 328-335, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639454

ABSTRACT

OBJECTIVES: To evaluate maximal inspiratory (MIP) and expiratory (MEP) pressures, which are reflective of respiratory muscle strength, in skeletal Class II patients with different growth patterns (horizontal, average, and vertical) and to correlate those with airway dimension. MATERIALS AND METHODS: Patients with a Class II skeletal base seeking orthodontic treatment were assigned to the following groups: average, horizontal, and vertical growth pattern. The control group (n = 14) comprised patients with a Class I skeletal base and average growth pattern. Airway dimensions were obtained using cone-beam computed tomography scans, and a spirometer with a pressure transducer was used for assessment of MIP and MEP. Routine spirometry for assessment of lung function was also performed. RESULTS: No significant differences were found in maximal inspiratory and expiratory pressures for the study groups in comparison with the control group. Class I patients had significantly greater oropharyngeal and nasopharyngeal airway volumes compared with the study groups. No significant difference in minimal cross-section area of the airway was observed among groups. A weak positive correlation between maximal inspiratory pressure and airway volume was observed. CONCLUSIONS: Although Class I patients displayed significantly greater oropharyngeal and nasopharyngeal airway volumes, there was no significant difference in respiratory muscle strength or airway function between Class II patients with different growth patterns and the Class I control group. The findings underscore the significance of exploring factors beyond craniofacial growth patterns that may contribute to sleep-related breathing disorders.


Subject(s)
Nasopharynx , Respiratory System , Humans , Oropharynx/diagnostic imaging , Respiratory Muscles , Respiration , Cone-Beam Computed Tomography/methods
8.
BMC Oral Health ; 24(1): 408, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561756

ABSTRACT

BACKGROUND: Supracrestal gingival tissue dimensions (SGTDs) has been considered to be an essential element of periodontal phenotype (PP) components. This study aimed to explore the relationship between SGTDs and other PP components by digital superposition method that integrated cone beam computed tomography (CBCT) with intraoral scanning. METHODS: This cross-sectional study was conducted at the Stomatology Hospital of Fujian Medical University. Participants were recruited based on the inclusion and exclusion criteria. The data obtained from the digital scanner (TRIOS 3, 3Shape, Denmark) and CBCT images were imported into the TRIOS software (Implant Studio, 3Shape, Denmark) for computing relevant parameters. The significant level was set at 0.05. RESULTS: A total of 83 participants with 498 maxillary anterior teeth were finally included. The mean values of supracrestal gingival height (SGH) and the distance from the cementoenamel junction (CEJ) to the crest of the alveolar ridge (CEJ-ABC) on the buccal site were significantly higher than palatal SGH (SGH-p) and palatal CEJ-ABC (CEJ-ABC-p). Men exhibited taller CEJ-ABC and SGH-p than women. Additionally, tooth type was significantly associated with the SGH, SGH-p and CEJ-ABC-p. Taller SGH was associated with wider crown, smaller papilla height (PH), flatter gingival margin, thicker bone thickness (BT) and gingival thickness (GT) at CEJ, the alveolar bone crest (ABC), and 2 mm apical to the ABC. Smaller SGH-p displayed thicker BT and GT at CEJ, the ABC, and 2 and 4 mm apical to the ABC. Higher CEJ-ABC showed lower interproximal bone height, smaller PH, flatter gingival margin, thinner GT and BT at CEJ, and 2 mm apical to the ABC. Smaller CEJ-ABC-p displayed thicker BT at CEJ and 2 and 4 mm apical to the ABC. On the buccal, thicker GT was correlated with thicker BT at 2 and 4 mm below the ABC. CONCLUSION: SGTDs exhibited a correlation with other PP components, especially crown shape, gingival margin and interdental PH. The relationship between SGTDs and gingival and bone phenotypes depended on the apico-coronal level evaluated. TRIAL REGISTRATION: This study was approved by the Biomedical Research Ethics Committee of Stomatology Hospital of Fujian Medical University (approval no. 2023-24).


Subject(s)
Breast Cyst , Gingiva , Maxilla , Male , Humans , Female , Cross-Sectional Studies , Maxilla/diagnostic imaging , Gingiva/diagnostic imaging , Tooth Crown , Cone-Beam Computed Tomography/methods , China
9.
BMC Oral Health ; 24(1): 415, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575886

ABSTRACT

BACKGROUND: The objective of the present study was to evaluate the reliability of an augmented reality drilling approach and a freehand drilling technique for the autotransplantation of single-rooted teeth. MATERIALS AND METHODS: Forty samples were assigned to the following surgical techniques for drilling guidance of the artificial sockets: A. augmented reality technique (AR) (n = 20) and B. conventional free-hand technique (FT) (n = 20). Then, two models with 10 teeth each were submitted to a preoperative cone-beam computed tomography (CBCT) scan and a digital impression by a 3D intraoral scan. Afterwards, the autotrasplanted teeth were planned in a 3D dental implant planning software and transferred to the augmented reality device. Then, a postoperative CBCT scan was performed. Data sets from postoperative CBCT scans were aligned to the planning in the 3D implant planning software to analize the coronal, apical and angular deviations. Student's t-test and Mann-Whitney non-parametric statistical analysis were used to analyze the results. RESULTS: No statistically significant differences were shown at coronal (p = 0.123) and angular (p = 0.340) level; however, apical deviations between AR and FT study groups (p = 0.008) were statistically significant different. CONCLUSION: The augmented reality appliance provides higher accuracy in the positioning of single-root autotransplanted teeth compared to the conventional free-hand technique.


Subject(s)
Augmented Reality , Dental Implants , Surgery, Computer-Assisted , Humans , Transplantation, Autologous , Reproducibility of Results , Computer-Aided Design , Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional
10.
Int J Oral Maxillofac Implants ; 39(2): 263-270, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657218

ABSTRACT

PURPOSE: To describe the use of digital technology to surgically guide the shell technique using allogenic cortical plates for a fully guided bone augmentation procedure. MATERIALS AND METHODS: A total of 10 patients who required bone augmentation for implant placement were included in this study. Allogenic cortical plates were planned using CAD/CAM to have identical thickness to the original cortical plates, then were digitally positioned and shaped to outline the bone defect according to the existing anatomical details. A cutting pattern and a surgical template were manufactured according to the digitally preplanned bone graft and the intraoral setting. RESULTS: A total of 12 horizontal bone grafting procedures were performed using the shell technique with allogenic cortical plates. All grafting procedures were deemed successful and allowed for ideal 3D implant positioning. Of the 12 bone grafting procedures, which used a surgical template to position the cortical plate, 3 required an adjustment to reposition the plate to a more ideal position. CONCLUSIONS: Digital technology was used to create a surgical template to guide the shell bone grafting technique with allogenic cortical plates. All surgical templates offered a fixed support to hold the cortical allogenic plate in the preplanned position, offering a predictable, simplified, and accurate guided bone grafting procedure. Further studies on a larger population of patients are necessary to assess those results and to verify the treatment approach described in this study.


Subject(s)
Alveolar Ridge Augmentation , Bone Plates , Bone Transplantation , Computer-Aided Design , Humans , Prospective Studies , Male , Female , Alveolar Ridge Augmentation/methods , Middle Aged , Bone Transplantation/methods , Adult , Dental Implantation, Endosseous/methods , Treatment Outcome , Surgery, Computer-Assisted/methods , Transplantation, Homologous , Aged , Cone-Beam Computed Tomography
11.
Int J Oral Maxillofac Implants ; 39(2): 271-277, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657219

ABSTRACT

PURPOSE: To investigate the relationship between the structural parameters of trabecular bone obtained from CBCT imaging and the primary stability of dental implants. MATERIALS AND METHODS: Sixty patients underwent implant placement followed by primary stability evaluation via measurement of the insertion torque (IT) and the implant stability quotient (ISQ). Gray values (GV) and the fractal dimension (FD) were also measured using pretreatment CBCT images. RESULTS: FD values showed a positive and significant relationship with ISQ and IT values (P = .017 and P = .004, respectively). Additionally, there was a positive and significant correlation between GV and IT (P = .004) as well as between GV and ISQ (P = .010). FD and GV showed a considerable difference between the maxillary and mandibular jaws and were higher in the mandible. Only FD was significantly different between men and women and was higher in men. In the two age groups (older and younger than 45 years), only GV was considerably higher in people older than 45 (P < .05). CONCLUSIONS: Both fractal dimension and gray values obtained from CBCT are efficient methods for predicting the primary stability of the implant due to their relationship with ISQ and IT values.


Subject(s)
Cancellous Bone , Cone-Beam Computed Tomography , Dental Implants , Fractals , Humans , Female , Male , Middle Aged , Adult , Cancellous Bone/diagnostic imaging , Dental Implantation, Endosseous/methods , Torque , Aged , Dental Prosthesis Retention , Mandible/diagnostic imaging
12.
Acta Odontol Scand ; 83: 204-209, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661245

ABSTRACT

OBJECTIVE: The current study explores whether there is a clinically relevant distinction in the measurement of marginal bone loss when comparing high-dose (HD) versus low-dose (LD) cone beam computed tomography (CBCT) protocols in small and large acquisition volumes.  Material and Methods: CBCTs of four human cadaveric preparates were taken in HD and LD mode in two different fields of view 8 × 8 cm2 (LV) and 5 × 5 cm2 (SV). In total, 43 sites of 15 teeth were randomly chosen, and marginal bone loss was measured twice in all protocols at 43 sites of 15 teeth by one calibrated investigator. Bland-Altman plots and Lin's concordance correlation coefficient (CCC) were calculated to assess the extent of agreement of the measurements. Additionally, the rater scored the certainty in each of the measurements. RESULTS: For HD-CBCT CCC of measurements obtained using SV versus LV was 0.991. CCC of measurements obtained using SV versus LV of LD-CBCT was 0.963. Both CCC values indicated excellent agreement between the two volumes in both protocols.  CCC also indicated high intramodality correlation between HD-CBCT and LD-CBCT independent of the acquisition volume (0.963 - 0.992). Bland-Altman plots also indicated no substantial differences. Results of certainty scoring showed significant differences (p = 0.004 (LV), p < 0.001(SV)) between the LD and HD-CBCT. CONCLUSIONS: Accuracy of measurements of bone loss shows no clinical noticeable effects depending on the CBCT volume in this ex vivo study. There appears to be no relevant advantage of SV over LV, neither in HD-CBCT nor in LD-CBCT and additionally no relevant advantage of HD versus LD in visualizing marginal bone loss.


Subject(s)
Cadaver , Cone-Beam Computed Tomography , Cone-Beam Computed Tomography/methods , Humans , Alveolar Bone Loss/diagnostic imaging
13.
BMC Oral Health ; 24(1): 467, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632555

ABSTRACT

BACKGROUND: The temporomandibular joint (TMJ) is closely related to the dynamic balance and stability of mandibular function and orthodontic treatment. Skeletal class II female patients are thought to be at high risk for TMJ disease. The relationship between the TMJ and craniofacial structures is still controversial. This study compared the morphology and position of the TMJ in skeletal class II adolescents and adults with various vertical facial types using cone-beam computed tomography (CBCT). MATERIALS AND METHODS: A total of 117 skeletal class II patients were divided into three groups according to the FH-GoGn angle (hypodivergent, normodivergent and hyperdivergent), with 40 class I normodivergent patients serving as controls. Each group contained two age subgroups (adolescents: 11-14 years old, adults: 18-35 years old). The size (condylar length, height, long and short axis diameter, glenoid fossa width and depth) and shape (condylar neck inclination, condylar head angle and long axis angle, articular eminence inclination) of the condyle and fossa, joint space (anterior, superior, posterior, mesial and lateral), and position of the fossa (vertical, transverse, and anteroposterior distance) and condyle were measured and compared using CBCT. RESULTS: Class II hypodivergent patients exhibited the greatest condylar length, height, and long- and short-axis diameter; steepest articular eminence; deepest fossa depth; largest superior, mesial and lateral joint spaces; and highest fossa position in both age groups. The manifestations of class II hyperdivergent patients were mostly the opposite. In adults, except for the condylar long axis angle, the measurements of the condyle increased differently among skeletal patterns, while the measurements of the fossa decreased, as the joint spaces and fossa position remained approximately stable compared with those in adolescents. CONCLUSION: The vertical skeletal pattern, rather than the class II sagittal skeletal pattern, may be the main factor affecting the morphology and position of the TMJ. Attention should be given to the TMJ area in hyperdivergent patients with a relatively poor-fit condyle-fossa relationship. The changes in the TMJ with age were mainly morphological rather than positional and varied with skeletal pattern.


Subject(s)
Mandibular Condyle , Temporomandibular Joint , Adult , Adolescent , Humans , Female , Child , Young Adult , Cross-Sectional Studies , Mandible , Face , Cone-Beam Computed Tomography/methods
14.
Phys Med Biol ; 69(9)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38565128

ABSTRACT

Objective. Radio-opaque markers are recommended for image-guided radiotherapy in liver stereotactic ablative radiotherapy (SABR), but their implantation is invasive. We evaluate in thisin-silicostudy the feasibility of cone-beam computed tomography-guided stereotactic online-adaptive radiotherapy (CBCT-STAR) to propagate the target volumes without implanting radio-opaque markers and assess its consequence on the margin that should be used in that context.Approach. An emulator of a CBCT-STAR-dedicated treatment planning system was used to generate plans for 32 liver SABR patients. Three target volume propagation strategies were compared, analysing the volume difference between the GTVPropagatedand the GTVConventional, the vector lengths between their centres of mass (lCoM), and the 95th percentile of the Hausdorff distance between these two volumes (HD95). These propagation strategies were: (1) structure-guided deformable registration with deformable GTV propagation; (2) rigid registration with rigid GTV propagation; and (3) image-guided deformable registration with rigid GTV propagation. Adaptive margin calculation integrated propagation errors, while interfraction position errors were removed. Scheduled plans (PlanNon-adaptive) and daily-adapted plans (PlanAdaptive) were compared for each treatment fraction.Main results.The image-guided deformable registration with rigid GTV propagation was the best propagation strategy regarding tolCoM(mean: 4.3 +/- 2.1 mm), HD95 (mean 4.8 +/- 3.2 mm) and volume preservation between GTVPropagatedand GTVConventional. This resulted in a planning target volume (PTV) margin increase (+69.1% in volume on average). Online adaptation (PlanAdaptive) reduced the violation rate of the most important dose constraints ('priority 1 constraints', 4.2 versus 0.9%, respectively;p< 0.001) and even improved target volume coverage compared to non-adaptive plans (PlanNon-adaptive).Significance. Markerless CBCT-STAR for liver tumours is feasible using Image-guided deformable registration with rigid GTV propagation. Despite the cost in terms of PTV volumes, daily adaptation reduces constraints violation and restores target volumes coverage.


Subject(s)
Cone-Beam Computed Tomography , Feasibility Studies , Liver Neoplasms , Liver , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Liver/diagnostic imaging , Liver/radiation effects , Liver Neoplasms/radiotherapy , Liver Neoplasms/diagnostic imaging
15.
Braz Oral Res ; 38: e010, 2024.
Article in English | MEDLINE | ID: mdl-38597509

ABSTRACT

This study evaluated the stress distribution in the dentoalveolar and palatal bone structures during maxillary expansion in a 17-year-old male patient with bilateral cleft lip and palate (BCLP) using expanders with dental (HYRAX) and skeletal anchorage (MARPE). For the generation of the specific finite element models, cone-beam computed tomography was used, and the DICOM files were exported to Mimics 3-Matic (Materialise) and Patran (MSC Software) software. Three specific three-dimensional models were generated: A) HYRAX: conventional four-banded hyrax screw (9 mm); B) MARPE-DS: 3 miniscrews (1.8 mm diameter - 5.4 mm length) and four-banded dental anchorage; and C) MARPE-NoDS: 3 miniscrews without dental anchorage. Maxillary expansion was simulated by activating the expanders transversely 1 mm on the "X" axis. HYRAX resulted in higher levels of deformation predominantly in the dentoalveolar region. MARPE-DS showed stress in the dentoalveolar region and mainly in the center of the palatal region, at approximately 4,000 µÎµ. MARPE-NoDS exhibited evident stress only in the palatal region. High stress levels in the root anchoring teeth were observed for HYRAX and MARPE-DS. In contrast, MARPE-NoDS cause stress on the tooth structure. The stress distribution from the expanders used in the BLCP showed asymmetric expansive behavior. During the initial activation phase of expansion, the HYRAX and MARPE-DS models produced similarly high strain at the dentoalveolar structures and upper posterior teeth displacement. The MARPE-NoDS model showed restricted strain on the palate.


Subject(s)
Cleft Lip , Cleft Palate , Male , Humans , Adolescent , Cleft Lip/diagnostic imaging , Cleft Palate/diagnostic imaging , Finite Element Analysis , Maxilla/diagnostic imaging , Palate/surgery , Cone-Beam Computed Tomography/methods
16.
BMC Oral Health ; 24(1): 442, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605361

ABSTRACT

BACKGROUND: Radiolucencies found at the root apex in patients with cemento-osseous dysplasia (COD) may be mistaken for periapical cysts (PC) of endodontic origin. The purpose of this study was to examine the utility of quantitative texture analysis using cone-beam computed tomography (CBCT) to differentiate between COD and PC. METHODS: Patients who underwent CBCT at Wonkwang University Daejeon Dental Hospital between January 2019 and December 2022 and were diagnosed with COD and PC by clinical, radiologic, and, if necessary, histopathologic examination were included. Twenty-five patients each were retrospectively enrolled in the COD and PC group. All lesions observed on axial CBCT images were manually segmented using the open-access software MaZda version 4.6 to establish the regions of interest, which were then subjected to texture analysis. Among the 279 texture features obtained, 10 texture features with the highest Fisher coefficients were selected. Statistical analysis was performed using the Mann-Whitney U-test, Welch's t-test, or Student's t-test. Texture features that showed significant differences were subjected to receiver operating characteristics (ROC) curve analysis to evaluate the differential diagnostic ability of COD and PC. RESULTS: The COD group consisted of 22 men and 3 women, while the PC group consisted of 14 men and 11 women, showing a significant difference between the two groups in terms of sex (p=0.003). The 10 selected texture features belonged to the gray level co-occurrence matrix and included the sum of average, sum of entropy, entropy, and difference of entropy. All 10 selected texture features showed statistically significant differences (p<0.05) when comparing patients with COD (n=25) versus those with PC (n=25), osteolytic-stage COD (n=11) versus PC (n=25), and osteolytic-stage COD (n=11) versus cementoblastic-stage COD (n=14). ROC curve analysis to determine the ability to differentiate between COD and PC showed a high area under the curve ranging from 0.96 to 0.98. CONCLUSION: Texture analysis of CBCT images has shown good diagnostic value in the differential diagnosis of COD and PC, which can help prevent unnecessary endodontic treatment, invasive biopsy, or surgical intervention associated with increased risk of infection.


Subject(s)
Odontogenic Tumors , Radicular Cyst , Spiral Cone-Beam Computed Tomography , Male , Humans , Female , Radicular Cyst/diagnostic imaging , Retrospective Studies , Diagnosis, Differential , Cone-Beam Computed Tomography/methods
17.
BMC Oral Health ; 24(1): 304, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438985

ABSTRACT

BACKGROUND: Postoperative cone-beam computed tomography (CBCT) examination is considered a reliable method for clinicians to assess the positions of implants. Nevertheless, CBCT has drawbacks involving radiation exposure and high costs. Moreover, the image quality can be affected by artifacts. Recently, some literature has mentioned a digital registration method (DRM) as an alternative to CBCT for evaluating implant positions. The aim of this clinical study was to verify the accuracy of the DRM compared to CBCT scans in postoperative implant positioning. MATERIALS AND METHODS: A total of 36 patients who received anterior maxillary implants were included in this clinical study, involving a total of 48 implants. The study included 24 patients in the single implant group and 12 patients in the dual implant group. The postoperative three-dimensional (3D) positions of implants were obtained using both CBCT and DRM. The DRM included three main steps. Firstly, the postoperative 3D data of the dentition and intraoral scan body (ISB) was obtained through the intraoral scan (IOS). Secondly, a virtual model named registration unit which comprised an implant replica and a matching ISB was created with the help of a lab scanner and reverse engineering software. Thirdly, by superimposing the registration unit and IOS data, the postoperative position of the implant was determined. The accuracy of DRM was evaluated by calculating the Root Mean Square (RMS) values after superimposing the implant positions obtained from DRM with those from postoperative CBCT. The accuracy of DRM was compared between the single implant group and the dual implant group using independent sample t-tests. The superimposition deviations of CBCT and IOS were also evaluated. RESULTS: The overall mean RMS was 0.29 ± 0.05 mm. The mean RMS was 0.30 ± 0.03 mm in the single implant group and 0.29 ± 0.06 mm in the dual implant group, with no significant difference (p = 0.27). The overall registration accuracy of the IOS and CBCT data ranged from 0.14 ± 0.05 mm to 0.21 ± 0.08 mm. CONCLUSION: In comparison with the 3D implant positions obtained by CBCT, the implant positions located by the DRM showed clinically acceptable deviation ranges. This method can be used in single and dual implant treatments to assess the implant positions.


Subject(s)
Dental Implants , Radiation Exposure , Humans , Prospective Studies , Artifacts , Cone-Beam Computed Tomography
20.
J Zhejiang Univ Sci B ; 25(3): 244-253, 2024 Mar 15.
Article in English, Chinese | MEDLINE | ID: mdl-38453638

ABSTRACT

OBJECTIVES: Distolingual root of the permanent mandibular first molar (PMFM-DLR) has been frequently reported, which may complicate the treatment of periodontitis. This study aimed to assess the morphological features of PMFM-DLR and investigate the correlation between the morphological features of PMFM-DLR and periodontal status in patients with Eastern Chinese ethnic background. MATERIALS AND METHODS: A total of 836 cone beam computed tomography (CBCT) images with 1497 mandibular first molars were analyzed to observe the prevalence of PMFM-DLR at the patients and tooth levels in Eastern China. Among them, complete periodontal charts were available for 69 Chinese patients with 103 teeth. Correlation and regression analyses were used to evaluate the correlation between the morphological features of DLR, bone loss, and periodontal clinical parameters, including clinical attachment loss (CAL), probing pocket depth (PPD), gingival recession (GR), and furcation involvement (FI). RESULTS: The patient-level prevalence and tooth-level prevalence of DLR in mandibular first molars were 29.4% and 26.3%, respectively. Multiple linear regression analysis suggested that bone loss at the lingual site and CAL were negatively affected by the angle of separation between distolingual and mesial roots in the transverse section, while they were significantly influenced by age and the angle of separation between distobuccal and mesial roots in the coronal section. CONCLUSIONS: The prevalence of PMFM-DLR in Eastern China was relatively high in our cohort. The morphological features of DLR were correlated with the periodontal status of mandibular first molars. This study provides critical information on the morphological features of DLR for improved diagnosis and treatment options of mandibular molars with DLR.


Subject(s)
Spiral Cone-Beam Computed Tomography , Humans , Cross-Sectional Studies , Clinical Relevance , Molar/diagnostic imaging , Tooth Root/diagnostic imaging , Tooth Root/anatomy & histology , Cone-Beam Computed Tomography/methods , Mandible/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...